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We develop the characterization of the dynamics at the noise-perturbed edge of chaos in logistic maps in
terms of the quantities normally used to describe glassy properties in structural glass formers. Following the
recognition �Phys. Lett. A 328, 467 �2004�� that the dynamics at this critical attractor exhibits analogies with
that observed in thermal systems close to vitrification, we determine the modifications that take place with
decreasing noise amplitude in ensemble- and time-averaged correlations and in diffusivity. We corroborate
explicitly the occurrence of two-step relaxation, aging with its characteristic scaling property, and subdiffusion
and arrest for this system. We also discuss features that appear to be specific to the map.
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I. INTRODUCTION

The erratic motion of a Brownian particle is usually de-
scribed by the Langevin theory �1�. As is well known, this
method finds a way round the detailed consideration of many
degrees of freedom by representing via a noise source the
effect of collisions with molecules in the fluid in which the
particle moves. The approach to thermal equilibrium is pro-
duced by random forces, and these are sufficient to determine
dynamical correlations, diffusion, and a basic form for the
fluctuation-dissipation theorem �1�.

In the same spirit, attractors of nonlinear low-dimensional
maps under the effect of external noise can be used to model
states in systems with many degrees of freedom. In a one-
dimensional map with only one control parameter � the con-
sideration of external noise could be thought to represent the
effect of many other systems coupled to it, like in the so-
called coupled map lattices �2�. Notice that the general map
formula

xt+1 = xt + h��xt� + ��t �1�

is a discrete form for a Langevin equation with nonlinear
“friction force” term h�. In Eq. �1�, t=0,1 , . . . is the iteration
time, �t is a Gaussian white noise ���t�t��=�t,t��, and � mea-
sures the noise intensity.

An interesting option offered by Eq. �1� is the study of
singular states known to exhibit anomalous dynamics. For
instance, the so-called onset of chaos in logistic maps is a
critical attractor with nonergodic and nonmixing phase-space
properties, and the perturbation of this attractor with noise
transforms its trajectories into genuinely chaotic ones with
regular ergodic and mixing properties. A case in point here
would be to obtain the atypical dynamics near an ergodic to
nonergodic transition and compare it, for example, to that in
supercooled liquids close to glass formation, where also an
ergodic to nonergodic transition is believed to occur. The
dynamical properties for such glassy states appear associated
with two-time correlations with loss of time translation in-
variance �TTI� and aging scaling properties, as well as with

subdiffusion and arrest �3,4�. The specific question we would
like to address is whether there are properties shared, and, if
so, to what extent, by critical attractors in nonlinear low-
dimensional maps and nonergodic states in systems with
many degrees of freedom.

Recently �5�, it has been realized that the dynamics at the
noise-perturbed edge of chaos in logistic maps shows simi-
larities with that observed in supercooled liquids close to
vitrification. Three major features of glassy dynamics in
structural glass formers—two-step relaxation, aging, and a
relationship between relaxation time and configurational
entropy—were shown to be displayed by the properties of
orbits with vanishing Lyapunov coefficient. Interestingly, the
previously known properties in control-parameter space of
the noise-induced bifurcation gap �see Fig. 1� �6,7� play a
central role in determining the characteristics of dynamical
relaxation at the chaos threshold, and this was exploited to
uncover the analogy between the dynamical and thermal sys-
tems in which the noise amplitude � plays a role equivalent
to a temperature difference T−Tg, where Tg is the so-called
glass transition temperature �3,4�.

In Ref. �5� only the properties of single-time functions
�i.e., trajectories� were discussed and here we focus the
analysis on two-time correlations. This would allow for a
closer examination of the analogy with glassy dynamics as
the study of the latter often centers on two-time correlations.
However, we also look at diffusion properties via the deter-
mination of the mean-square displacement of trajectories in a
suitably space-extended map. To lay emphasis on the simi-
larities in the dynamics between the two types of systems we
analyze the attainment of TTI in the correlations caused by
the action of noise. We recall �8,9� that exposure of attractors
to noise has the features of an activated process, a mecha-
nism that is usually considered in the interpretation of relax-
ation processes in glass formers. Also we make up a simple
“landscape” picture for the properties of the noise-perturbed
map in order to compare it with that obtained from the mul-
tidimensional energy landscape of supercooled liquids.
Aware of our crude attempt to contrast the dynamics of a
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single map �although equivalent to a coupled array of such
maps when described via a Langevin-type equation� with
that of thermal systems, we point out the main differences
encountered. Specifically, the dynamics at the onset of chaos
displays regular patterns absent in the known �experimental
or computed� dynamics of molecular systems. These differ-
ences reflect the peculiarities of the period-doubling route to
chaos displayed by unimodal maps.

The structure of the body of the article is as follows: In
Sec. II we recall essential properties of the logistic map un-
der additive noise—e.g., the bifurcation gap and its time-
dependent manifestation at the chaos threshold. In Sec. III
we present results on ensemble-averaged two-time correla-
tions for ��0, the attainment of TTI, and the development
of two-step relaxation as �→0. In Sec. IV we focus on time-
averaged two-time correlations and the occurrence of the
characteristic aging scaling at the onset of chaos with �=0.
In Sec. V we present a repeated-cell map for diffusion at the
onset of chaos and show the evolution in behavior from dif-
fusive to subdiffusive and finally to localization as �→0. In
Sec. VI we make final remarks.

II. NOISE-PERTURBED ONSET OF CHAOS

We describe now the effect of additive noise in the dy-
namics at the onset of chaos in the logistic map

xt+1 = 1 − �xt
2 + ��t, − 1 � xt � 1, 0 � � � 2, �2�

where h� in Eq. �1� has taken the form h��x�=1−x−�x2. For
�=0 at the onset of chaos at �c=1.401 15. . . the orbit with
attractor initial condition x0=0 consists of positions arranged
as nested power-law time subsequences that asymptotically
reproduce the full period-doubling cascade that occurs for
���c �10,11� �see the open circles in Fig. 2�. This orbit is
the last �the accumulation point� of the so-called “super-
stable” orbits of period 2n which occur at �= �̄n��c, n
=1,2 , . . ., a superstable orbit of period 2�. Superstable orbits
include x=0 as one of their positions, and their Lyapunov
exponent 	1 diverges to −� �6�. A transient dynamics at the
onset of chaos is observed for trajectories with initial posi-
tion outside the Feigenbaum attractor but we shall not con-
sider this in what follows. For �
0 the noise fluctuations
wipe the fine structure of the periodic attractors as the iterate
visits positions within a set of bands or segments similar to
those in the chaotic attractors. Nevertheless, there remains a
well-defined transition to chaos at �c��� where the Lyapunov
exponent 	1 changes sign �6,7�. The period doubling of
bands ends at a finite maximum period 2N��� as �→�c���
�see Fig. 1�c�� and then decreases at the other side of the
transition. This effect displays scaling features and is referred
to as the bifurcation gap �6,7�. For instance, ��c��� where
����c�0�−�c��� and �=ln �F / ln , where �F

=0.466 92. . . is one of the two Feigenbaum’s universal con-
stants �the second, �F=2.502 90. . ., measures the power-law
period-doubling spreading of iterate positions�, and 
	2
2�F�1+1/�F

2�−1/2	6.619. See �5� and references
therein. When � is small the trajectories visit sequentially the
set of 2N��� disjoint bands leading to a cycle, but the behavior
inside each band is irregular. These trajectories represent er-
godic states as the accessible positions have a fractal dimen-

FIG. 1. �a� Logistic map attractor. �b� Magnification of the box
in �a�. �c� Noise-induced bifurcation gap in the magnified box.

FIG. 2. Absolute values of positions in logarithmic scales of
iterations t for various trajectories at the onset of chaos �c��� start-
ing at x0=0. Open circles correspond to �=0 where the numbers
label time t=1, . . . ,16. Solid �dashed� lines represent trajectories
for noise amplitude �=10−3 ��=10−6� plotted only at times t=2n.
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sion equal to the dimension of phase space. When �=0 the
trajectories correspond to a nonergodic state, since as t→�
the positions form only a Cantor set of fractal dimension
df =0.538. . .. Thus the removal of the noise �→0 leads to an
ergodic-to-nonergodic transition in the map.

As shown in Ref. �5� when �=�c��� ��
0� there is a
“crossover” or “relaxation” time tx=�r−1, r=1−ln 2/ ln 
	0.6332, between two different time evolution regimes.
This crossover occurs when the noise fluctuations begin sup-
pressing the fine structure of the attractor as displayed by the
superstable orbit with x0=0 described above �see solid and
dashed lines in Fig. 2�. For t� tx the fluctuations are smaller
than the distances between the neighboring subsequence po-
sitions of the x0=0 orbit at �c�0�, and the iterate position
with �
0 falls within a small band around the �=0 position
for that t. The bands for successive times do not overlap. The
time evolution follows a subsequence pattern close to that in
the noiseless case. When t� tx the width of the noise-
generated band reached at time tx=2N��� matches the distance
between adjacent positions, and this implies a cutoff in the
progress along the position subsequences. At longer times t

 tx the orbits no longer trace the precise period-doubling
structure of the attractor. The iterates now follow increas-
ingly chaotic trajectories as bands merge with time. This is
the dynamical image—observed along the time evolution for
the orbits of a single state �c���—of the static bifurcation
gap initially described in terms of the variation of the control
parameter � �7�.

The entropy associated with the distribution of the iterate
positions within the 2N bands has the form Sc=2N�s, where s
is the entropy associated with a single band. Use of 2N= tx
and tx=�r−1, r−1	−0.3668 �5�, leads to

tx = �s/Sc��1−r�/r. �3�

Since �1−r� /r	0.5792, then tx→� and Sc→0 as �→0.
See �5� for details on the derivation. We have compared �5�
this expression with its counterpart in structural glass form-
ers: the Adam-Gibbs equation �3�.

III. TWO-STEP RELAXATION

The time evolution of equilibrium two-time correlations
in supercooled liquids on approach to glass formation dis-
play a two-step process of relaxation. This consists of a pri-
mary power-law decay in time difference t= t2− t1 that leads
into a plateau, and at the end of this there is a second power-
law decay that evolves into a faster decay that can be fitted
by a stretched exponential �3�. Also, the duration tx of the
plateau increases as an inverse power law of the difference
T−Tg�0 as the temperature T decreases to the glass transi-
tion temperature Tg. The first and second decays are usually
referred to as the � and � relaxation processes, respectively
�3�. An observable example of such a correlation function,
both experimentally and numerically, is the Fourier trans-
form of the density-density correlation at time difference t.
The former is known as the intermediate scattering function
while the latter is known as the van Hove function �3�.

The study of single-trajectory properties �one time func-
tions� in Ref. �5� led to the suggestion that the dynamical

behavior in the map at �c��� would show parallels to the
relaxation properties of glass formers. For instance, the ana-
log of the � relaxation would be obtained by considering
initial conditions x0 outside the critical attractor since the
ensuing orbits display a power-law transient as the positions
approach asymptotically those of the attractor. The interme-
diate plateau would correspond to the regime t� tx, described
in the previous section, when the iterates are confined to
nonintersecting bands before they reach the bifurcation gap;
its duration tx grows as an inverse power law of �. The
analog of the � relaxation was proposed to be the band-
merging crossover process that takes place for t
 tx. To ex-
plore more closely these similarities we evaluated the two-
time correlation function

ce�t1,t2� =
�xt2

xt1
� − �xt2

��xt1
�

�t1
�t2

, ,1 � t1 � t2, �4�

for different values of the noise amplitude �. In Eq. �4�, �¯�
represents an average over an ensemble of trajectories, all of
them starting with initial conditions x0=0 and �ti
=
�xti

2�− �xti
�2.

We first address the question of whether the exposure of
trajectories to noise has the effect of introducing, after an
initial transient period, a time translation invariance property
into the correlation in Eq. �4�—i.e., ce�t1 , t2�	ce�t= t2− t1�, t1

large. The presence of this effect would be analogous to ther-
malization in molecular systems, after which equilibrium
correlations are measured or computed �in glass forming sys-
tems for T
Tg�. In Fig. 3 we show how TTI develops and is
maintained for a sufficiently large time difference interval t
= t2− t1. The numerical limitation in evaluating accurate val-
ues for �c��� leads to an upper bound for t, but we checked
that increasing precision in �c��� leads to a larger interval
for t for which TTI is observed. In view of the results shown
in Fig. 3 we can conclude that under external noise of weak
amplitude the ensemble of trajectories “thermalizes” asymp-
totically into an “equilibrium” attractor.

The TTI property in the map still retains certain memory
of the initial t1, only in a generic way that reflects the char-
acteristic symmetries of the period-doubling onset of chaos
of the logistic map. Notice that in Fig. 3 the values for t1 are
of the form t1=2n+1. It is found that both the initial decay
and the value of the intermediate plateau of ce�t� are fixed
when the values of t1 belong to the sequence t1=2n+k, n
large with k fixed. However the main decay process of ce�t�
appears to be independent of t1. In Figs. 4�a� and 4�b� we
show the behavior of ce�t�, respectively, when t1=2n+1 and
t1=2n−1, n=9,10, . . .. In the first case �Fig. 4�a�� the corre-
lation maintains the initial value of unity from t=0 until the
main decay process sets in, while in the second case �Fig.
4�b�� there is initial decay at short times followed by a pla-
teau that ends when the same main decay as in Fig. 4�a�
takes place. For other values of k the correlation ce�t� shows
a behavior similar to that in Fig. 4�b� with different values
for the duration of the initial decay �which we refer to as the
� decay� and for the plateau, but always with the same main
decay �which we refer to as the � decay�. The � decay is
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itself made up of several plateaus the values of which alter-
nate when n is varied �as shown in Figs. 4�a� and 4�b��. In all
cases the duration of the main plateau coincides approxima-
tively with the crossover time tx at which the bifurcation gap
is reached �see the vertical arrows in Figs. 4�a� and 4�b��.
Thus, the identification of the encounter of the bifurcation
gap as the triggering event of the � relaxation process �5�
seems to be confirmed by the numerical evaluation of ce�t�.

IV. AGING

In glass-forming systems when T−Tg�0 �nonequilib-
rium� two-time correlations lose time translation invariance
and the dependence on the two times t1 and t2= t+ t1 has the
characteristic known as aging �4�. More specifically, the time
scale for the response to an external perturbation increases
with the waiting time tw, the time interval tw= t1− t0 from
system preparation at t0=0 to the moment of the perturbation
at t1. As a consequence, the equilibrium fluctuation-
dissipation relation that relates response and correlation
functions breaks down �4�. In this regime the decay of re-
sponse and correlation functions displays a scaling depen-
dence on the ratio t / tw �4�.

As indicated in Ref. �5� the power-law position subse-
quences shown in Fig. 2 that constitute the superstable orbit
of period 2� within the noiseless attractor at �c�0� imply a
built-in aging scaling property for the single-time function xt.

These subsequences are relevant for the description of trajec-
tories that are at first held at a given attractor position for a
waiting period of time tw and then released to the normal
iterative procedure. We chose the holding positions to be any
of those along the top band shown in Fig. 2 with tw=2k+1,
k=0,1 , . . .. One obtains �5�

xt+tw
	 expq�− 	qt/tw� , �5�

where expq�x���1− �q−1�x�1/1−q and 	q=ln �F / ln 2. This
property is gradually removed when noise is turned on. The
presence of a bifurcation gap limits its range of validity to
total times tw+ t� tx��� and so progressively disappears as �
is increased �5�.

When �=0 trajectories are nonergodic and ensemble and
time averages are not equivalent. For this reason we use a
time-averaged correlation c�t1 , t2� to study aging and its re-
lated scaling property at the onset of chaos for �=0, instead
of the ensemble-averaged ce�t1 , t2� in Eq. �4�. Also for this
case ce�t1 , t2� is not defined as �ti

=0 when the initial posi-
tions are all x0=0 or xtw

. We chose for c�t1 , t2� the form

c�tw,t + tw� = �1/N� �
n=n0

N

��n��tw���n��t + tw� , �6�

where ��t�= f�c

�t��0� and f��x�=1−�x2 and with n0 any posi-
tive integer and N�n0 a large integer. This definition of

FIG. 3. Development of time translation invariance �TTI� in the
correlation ce�t1 , t= t2− t1� through the action of noise of amplitude
� at the onset of chaos. All trajectories start x0=0 and tx is the time
to reach the bifurcation gap.

FIG. 4. Relaxation at the onset of chaos according to the corre-
lation function ce�t1 , t= t2− t1� defined in Eq. �4� for an ensemble of
500 trajectories starting at x0=0. In �a� t1 is of the form 2n+1 and
the noise amplitude is �=10−6 and 10−7. Vertical arrows, from left
to right, indicate the crossover time tx���. In �b� t1=2n−1 and �
=10−7.
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c�tw , t+ tw� is designed to capture the power-law patterns of
the trajectories at the noiseless onset of chaos. Equation �6�
considers multiples of the two reference times tw and
t+ tw—i.e., times at which trajectories recurrently visit a
given region of the attractor �15�. In Fig. 5�a� we show
c�tw , t+ tw� for different values of tw and in Fig. 5�b� the same
data where the rescaled variable t / tw=2n−1, tw=2k+1, k
=0,1 , . . ., has been used. We have calculated c�tw , t+ tw� for
different values of N and n0 and found in both cases the same
result as in Fig. 5�a�. The characteristic scaling of aging be-
havior is especially clear.

V. SUBDIFFUSION AND ARREST

The sharp slowdown of dynamics in supercooled liquids
on approach to vitrification is illustrated by the progression
from normal diffusiveness to subdiffusive behavior and fi-
nally to a halt in the growth of the molecular mean-square
displacement within a small range of temperatures or densi-
ties �12,13�. This deceleration of the dynamics is caused by
the confinement of any given molecule by a “cage” formed
by its neighbors, and it is the breakup and rearrangement of
the cages which drives structural relaxation, letting mol-
ecules diffuse throughout the system. Evidence indicates that
lifetime of the cages increases as conditions move toward the

glass transition, probably because cage rearrangements in-
volve a larger number of molecules as the glass transition is
approached �12,13�.

To investigate this aspect of vitrification in the map at
�c���, we constructed a periodic map via repetition of a
single �cell� map. This setting has being used to study deter-
ministic diffusion in nonlinear maps, in which the trajecto-
ries migrate into neighboring cells due to chaotic motion. For
fully chaotic maps diffusion is normal �6� but for marginally
chaotic maps it is anomalous �14�. In our case we design the
map in such a way that diffusion is due only to the random
noise term; otherwise, motion is confined to a single cell. So
we have the periodic map xt+1=F�xt�, F�l+x�= l+F�x�, l
= . . . ,−1 ,0 ,1 , . . ., where

F�x� = �− 1 − �cx
2 + �� , − 1 � x � 0,

1 − �cx
2 + �� , 0 � x � 1.

� �7�

Figure 6�a� shows the repeated-cell map together with a
portion of one of its trajectories. As can be observed, the
escape from the central cell into any of its neighbors occurs
when F�x�
1 and this can only happen when �
0. As
�→0 the escape positions are confined to values of x in-
creasingly closer to x=0, and for �=0 the iterate position is
trapped within the cell. Likewise for any other cell. Figure
6�b� shows the mean-square displacement �xt

2�− �xt�2 as ob-
tained from an ensemble of trajectories initially distributed
within the interval �−1,1� for several values of noise ampli-
tude. The progression from normal diffusion to subdiffusion
and to final arrest can be plainly observed as �→0. For
small � ��10−2�, �xt

2�− �xt�2 shows a downturn and later an
upturn similar to those observed in colloidal glass experi-
ments �12� and attributed to cage rearrangements. In the map
this feature reflects cell crossings.

VI. FINAL REMARKS

As we have shown, the dynamics of logistic maps at the
chaos threshold in the presence of noise displays elements
reminiscent of glassy dynamics as observed in molecular
glass formers. The limit of vanishing noise amplitude �
→0 �the counterpart of the limit T−Tg→0 in the super-
cooled liquid� leads to loss of ergodicity. This nonergodic
state with vanishing Lyapunov coefficient 	1=0 corresponds
to the limiting state, �→0, tx→�, of a family of small �
states with properties reminiscent of those in glass formers.
Some additional comments may be useful to appreciate both
similarities and differences between the two types of sys-
tems.

Activated dynamics is a standard component in under-
standing the relaxation mechanisms of glass formation �3,4�,
and so it is pertinent to note that there is a similar character-
istic in the dynamics that we studied here. It has long been
known �8,9� that the addition of external noise to a dissipa-
tive dynamical system �here a nonlinear one-dimensional
map� causes its trajectories to escape from attractors. For
chaotic attractors the mean escape time T has an exponential
Arrhenius form

FIG. 5. Aging according to the correlation c�tw , t+ tw� given by
Eq. �6� for the Feigenbaum attractor ��=�c, �=0�. Total observa-
tion time is n=1000. In �a� is shown the explicit dependence on the
waiting time �from left to right tw=1,3 ,5 ,7 ,9 ,11�. In �b� all curves
collapse upon rescaling t / tw.
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T � T0 exp�E0/R� ,

where E0 and R are the minimum escape “energy” and noise
“temperature,” respectively, and T0 is the inverse of the at-
tempt rate. The difference from the usual molecular setup is
that the escape is from the noiseless attractor and not from a
minimum in the potential energy. For critical attractors, like
the onset of chaos, the minimum escape energy vanishes and
the escape time is expected to follow a power law with

strong fluctuations �8,15�. We have seen that as �→0 an
increasing number of distinct but small phase-space bands
are involved in an increasingly slow decay of dynamic cor-
relations. On the other hand, in the usual picture of activated
dynamics in glass formers the increase of the relaxation time
as T−Tg→0 is thought to be associated with an increase in
the landscape energy barriers and the assumption of some
form of cooperative behavior by means of which a large
number of particles are rearranged through a very slow pro-
cess �3�.

The structure of the phase-space regions that are sampled
by trajectories as a function of the noise amplitude resemble
the manner in which a glass-forming system samples its en-
ergy landscape as a function of temperature �3�. The numbers
and widths of the attractor bands at noise amplitude � can be
thought to correspond to the numbers and extents of potential
energy basins of the landscape at a given depth set by the
temperature T. The “landscape” for the attractor has certainly
a very simple structure when compared to that of the multi-
dimensional energy landscape in a molecular system. At �
=0 there is an infinite set of minima that consists of all the
points M→� of the attractor, and as � increases these
minima merge into finite sets of M =2N��� bands with N de-
creasing as � grows. The regular merging by 2 in the num-
bers M and the features in the dynamics that they imprint are
properties specific of logistic type maps. Other kinds of criti-
cal multifractal attractors, such as those for the critical circle
map �6�, would exhibit other properties characteristic of the
route to chaos involved. This availability of detail would not
be generally present in the measurements or numerical com-
putation of the dynamics of a glass-forming molecular sys-
tem.

It is of interest to note that at �c��� the trajectories and its
resultant sensitivity to initial conditions are expressed for t
� tx via the q exponentials of the Tsallis q statistics �5�. For
�=0 these analytical forms are exact �10,15� and an identity
linking accordingly generalized Lyapunov coefficients and
rates of entropy production holds rigorously �11,15�. There is
nonuniform convergence related to the limits �→0 and t
→�. If �→0 is taken before t→�, orbits originating within
the attractor remain there and exhibit fully developed aging
properties, whereas if t→� is taken before �→0, a chaotic
orbit with exponential sensitivity to initial conditions would
be observed.
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